

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Federal Department of Economic Affairs, Education and Research EAER

Agroscope

Tracking fungal plant pathogens using biological soil monitoring data

Karen E. Sullam,

Florian Gschwend, Cecilia Panzetti, Jürg Enkerli, Franco Widmer

Agroscope Molecular Ecology

22 March, 2024

Fungal pathogen monitoring

• Typically, disease outbreaks are reported after symptoms occur

How can we obtain more information about soil-borne diseases before they occur?

Pathogen tracking with DNA sequencing

An increasing number of studies generate high throughput sequencing data through targeting fungal-specific DNA regions Obtain large, relatively inexpensive datasets about microbial communities

3

ANTARCTIC

fungal diversity

Pathogen tracking in soils | Jahrestagung der BGS, SGP, SGPW 2024 Karen Sullam et al.

Pathogen tracking with DNA sequencing

Pathogen tracking in soils | Jahrestagung der BGS, SGP, SGPW 2024 Karen Sullam et al.

Main research questions:

How can we utilize the tremendous amounts of data to better understand soil pathogen communities in Switzerland?

- Are temporal and spatial trends evident?
- Can we assess abiotic and biotic factors that influence pathogen communities?
- Can we obtain information about disease outbreaks from soil pathogen communities?

Soil-borne pathogens

 Conducted literature search for soil-borne pathogenic genera affecting arable land, grassland and forests

- Investigated sequence variants from focal taxa and explored their presence according to:
 - Temporal variation
 - Geographic differences
 - Abiotic and biotic factors

Pathogenic taxa	Land use type	Disease
 Armillaria spp 		Root rot
 Cylindrocarpon spp 	fundersh politikal farmer than da	Black foot/damping-off
 Fusarium oxysporum 	Wall of Alternative with a and the and a	Wilt
 Gaeumannomyces spp 	Wall & Although	Take-all
 Heterobasidion spp. 		Root rot
 Paraphoma spp. 	Walk with starting	Crown and root rot
 Rhizoctonia spp. 	Ward and the second and a	Root rot, damping-off
 Thielaviopsis spp. 	WAAAAAAAAA	Black root rot
 Sclerotinia spp. 	which and the and the second and a	Blights and rots
 Verticillium spp. 	William with an internation	Wilt

Which factors are associated with the focal pathogenic taxa?

Each pathogenic taxa was converted into a categorical variable (presence/absence) to evaluate its relationship with the following categorical and quantitative variables:

- Meteorological conditions
- Microbial measurements (Biomass, basal respiration)
- Soil properties (Sand, Silt, Loam, pH)
- Site-specific properties (Land use type, altitude, longitude, latitude, site-specificity)

Conclusions

- Datasets of microbial communities yield information on pathogen presence and diversity that are otherwise difficult to observe
- Ultimately could help with disease detection and prevention
- Abiotic and biotic factors drive presence of different genera (ex. land use type, site, precipitation, temperature)

Next steps and open questions

- We can form new hypotheses based on observations, for example:
 - Does disease occurrence and severity correspond to sequence variants?
 - Are some of the sequences from nonpathogenic variants?
 - Can we predict disease outbreaks from soil monitoring samples?
- Oomycete pathogen presence using monitoring samples

Agroscope, H. Forrer

Acknowledgments

Agroscope

- NABO: Janine Moll-Mielewczik, Anna-Sofia Hug, Andreas Gubler, Reto G. Meuli, Ramon Zimmermann
- Plant-Soil-Interactions: Andrea Bonvicini
- Molecular Ecology Research Group

Beat Stierli, Beat Frey

BAFU

Elena Havlicek

Pathogen tracking in soils | Jahrestagung der BGS, SGP, SGPW 2024 Karen Sullam et al.

Thank you for your attention:

Land Start

Tracking fungal plant pathogens using biological soil monitoring data

Karen Sullam karen.sullam@agroscope.admin.ch

